Irreversible inhibition of cytochrome P450 by nitric oxide.
نویسندگان
چکیده
Nitric oxide (NO) modulates various metabolisms through interaction with thiol proteins and hemoproteins. Although NO interacts reversibly with iron moieties of heme proteins, including cytochrome P450 (P450), dynamic aspects of the formation, catalytic functions and fates of NO-P450 adducts remain to be elucidated. When incubated with NOC7, which spontaneously and stoichiometrically releases NO within 5 min, microsomal P450 rapidly formed nitrosyl-heme adducts as determined by the electron spin resonance method. The signal intensity for the complex increased with time, peaking at 30 min and decreasing to below detectable levels by 60 min of incubation. In contrast, the microsomal levels of low-spin ferric forms of P450 (g = 2.26) rapidly decreased during the initial 30 min but recovered time-dependently thereafter. Analysis by differential spectra (reduced form/CO-reduced form) revealed that on incubation with NOC7, the form of microsomal P450 also changed in a biphasic manner. To elucidate the mechanism for the decrease in the levels of P450, microsomal levels of P450 isozymes (CYPs) were determined by Western blot analysis using specific antibodies against CYP3A2 and CYP2C11, major isoforms found in male rat liver. Kinetic analysis revealed that no appreciable degradation of P450 proteins occurred during the incubation of microsomes with NOC7. The effect of NO on the catalytic activity of the enzymes was determined by using testosterone as substrate because hydroxylation of steroid hormones is one of the major functions of P450. When exposed to NO, the hydroxylation activity in microsomes rapidly decreased during the initial 10 min and then disappeared slowly. These results suggested that NO formed dissociable complexes with P450 isozymes and the catalytic functions of these isozymes were irreversibly inactivated after dissociation from their heme moiety.
منابع مشابه
Bradykinin relaxation in small porcine retinal arterioles.
PURPOSE To study changes in the spontaneous diameter of small retinal arterioles and bradykinin (BK)-induced vasodilation during inhibition of the synthesis of nitric oxide (NO), prostaglandins (PGs), and cytochrome P450 2C8/9-dependent endothelial-derived hyperpolarizing factor (EDHF). METHODS Forty-eight isolated porcine arterioles with a diameter of approximately 70 microm were mounted in ...
متن کاملEndothelial nitric oxide synthase-independent release of nitric oxide in the aorta of the spontaneously hypertensive rat.
In the aorta of male spontaneously hypertensive rats (SHR), but not in that of normotensive Wistar-Kyoto rats (WKY), contractions to phenylephrine obtained in the presence of L-NAME [inhibitor of nitric oxide synthase (NOS)] and indomethacin (inhibitor of cyclooxygenase) are inhibited by an unknown endothelium-derived factor. The present study aimed to identify the mechanism underlying this end...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملThe nitric oxide- and prostaglandin-independent component of the renal vasodilator effect of thimerosal is mediated by epoxyeicosatrienoic acids.
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-derived metabolites of arachidonic acid that elicit vasodilation via activation of K(+) channels. They have been implicated as endothelium-derived hyperpolarizing factors (EDHFs), mediating the effect of some endothelium-dependent vasodilator agents such as bradykinin in some vascular tissues. We reasoned that an agent that increases the avai...
متن کاملExploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production
Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 283 3 شماره
صفحات -
تاریخ انتشار 1997